Cytotoxic effects of dental resin liquids on primary gingival fibroblasts and periodontal ligament cells in vitro.

نویسندگان

  • Y-L Lai
  • Y-T Chen
  • S-Y Lee
  • T-M Shieh
  • S-L Hung
چکیده

Cytotoxic effects of resin liquids of three in situ relining dental polymers, Alike, Kooliner, and Tokuso Rebase, and their major components, methyl methacrylate (MMA), isobutyl methacrylate (IBMA), and 1,6-hexanediol dimethacrylate (1,6-HDMA) were investigated. The concentrations of major monomers in these resin liquids were determined by high-performance liquid chromatography. Cellular viability of human gingival fibroblasts (GF) and periodontal ligament (PDL) cells were evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay. Moreover, patterns of cell death were analysed using annexin V/propidium iodide staining with flow cytometry. The results indicated that Alike liquid contained 91.3% MMA, Kooliner liquid contained 94.5% IBMA, and Tokuso Rebase liquid contained 65.8% 1,6-HDMA. All materials examined had cytotoxic effects on GF and PDL cells in dose-dependent manners. Tokuso Rebase liquid appeared to be the most cytotoxic among the various resin liquids examined. The effects of Kooliner and Tokuso Rebase liquids may have resulted from IBMA and 1,6-HDMA, respectively. Furthermore, the majority of treated cells died from necrosis; whereas a small portion of cells died from apoptosis. In conclusion, the results demonstrated that these liquid forms of dental polymers and their major monomers cause cytotoxic reactions. The direct relining procedure that cures these materials in situ should be used cautiously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Cytotoxic Effects of Nanoparticulate and Microparticulate Calcium Sodium Phosphosilicate Mouthwashes on Human Gingival Fibroblasts: an in-vitro Study

Introduction:  This study sought to assess the cytotoxic effects of nanoparticulate and microparticulate calcium sodium phosphosilicate mouthwashes on human gingival fibroblasts (HGFs). Methods: This in vitro study was conducted on HGFs isolated and cultured in a 48-well plate containing standard culture medium for evaluation of four concentrations of the two m...

متن کامل

A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro.

Both periodontal ligament and gingival tissue are thought to harbor cells with the ability to stimulate periodontal regeneration, i.e., formation of new bone, cementum, and connective tissue attachment. To understand further the role of these cells in the regenerative process, we compared human periodontal ligament cells and gingival fibroblasts, both derived from the same patient, same passage...

متن کامل

Functional characteristics of gingival and periodontal ligament fibroblasts.

In periodontal surgery, healing after guided tissue regeneration (GTR) may be explained by differences in functional activities of gingival and periodontal ligament fibroblasts (GF and PDLF). Several studies in vitro have supported this hypothesis, but much remains to be defined. In the present work, gingival and periodontal ligament fibroblasts derived from five healthy subjects were isolated ...

متن کامل

The efficiency of the in vitro osteo/dentinogenic differentiation of human dental pulp cells, periodontal ligament cells and gingival fibroblasts.

Although the primary cell cultures from dental pulp and other oral tissue are frequently used to study osteogenic potential and stem cell responses, few systematic and comparative studies on stemness for the dentinogenic differentiation of these cells have been conducted. In the present study, to investigate the stemness of oral primary cells during extended culture, human adult dental pulp cel...

متن کامل

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

  Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of oral rehabilitation

دوره 31 12  شماره 

صفحات  -

تاریخ انتشار 2004